AGC

of the same of the same

Amorphous Fluoropolymer

Chemistry for a Blue Planet

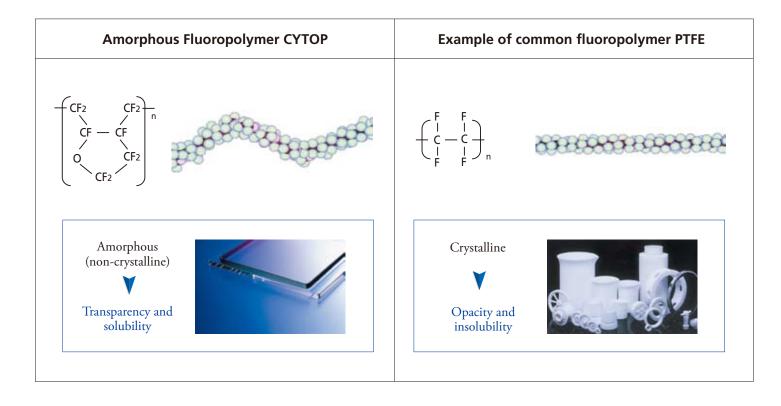
Creat a Safe, Secure, Comfortable and Environmentally Friendly World with Chemical Technology

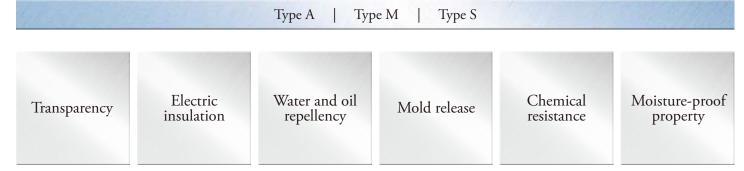
AGC Chemicals ASAHI GLASS CO., LTD.

Shin-Marunouchi Bldg., 1-5-1 Marunouchi, Chiyoda-ku, Tokyo 100-8405 URL: http://www.agc.com/kagaku/shinsei/cytop/en/

This brochure uses recycled paper.

CYTOP

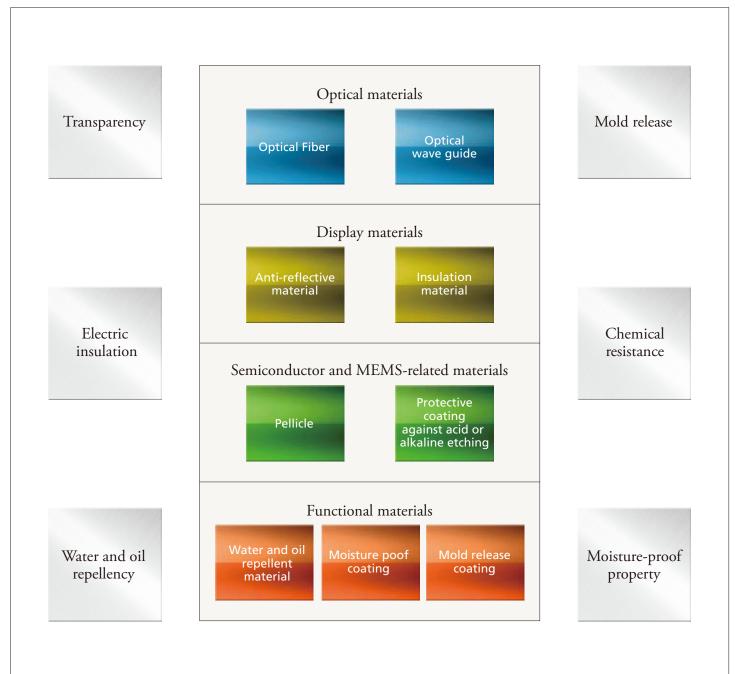


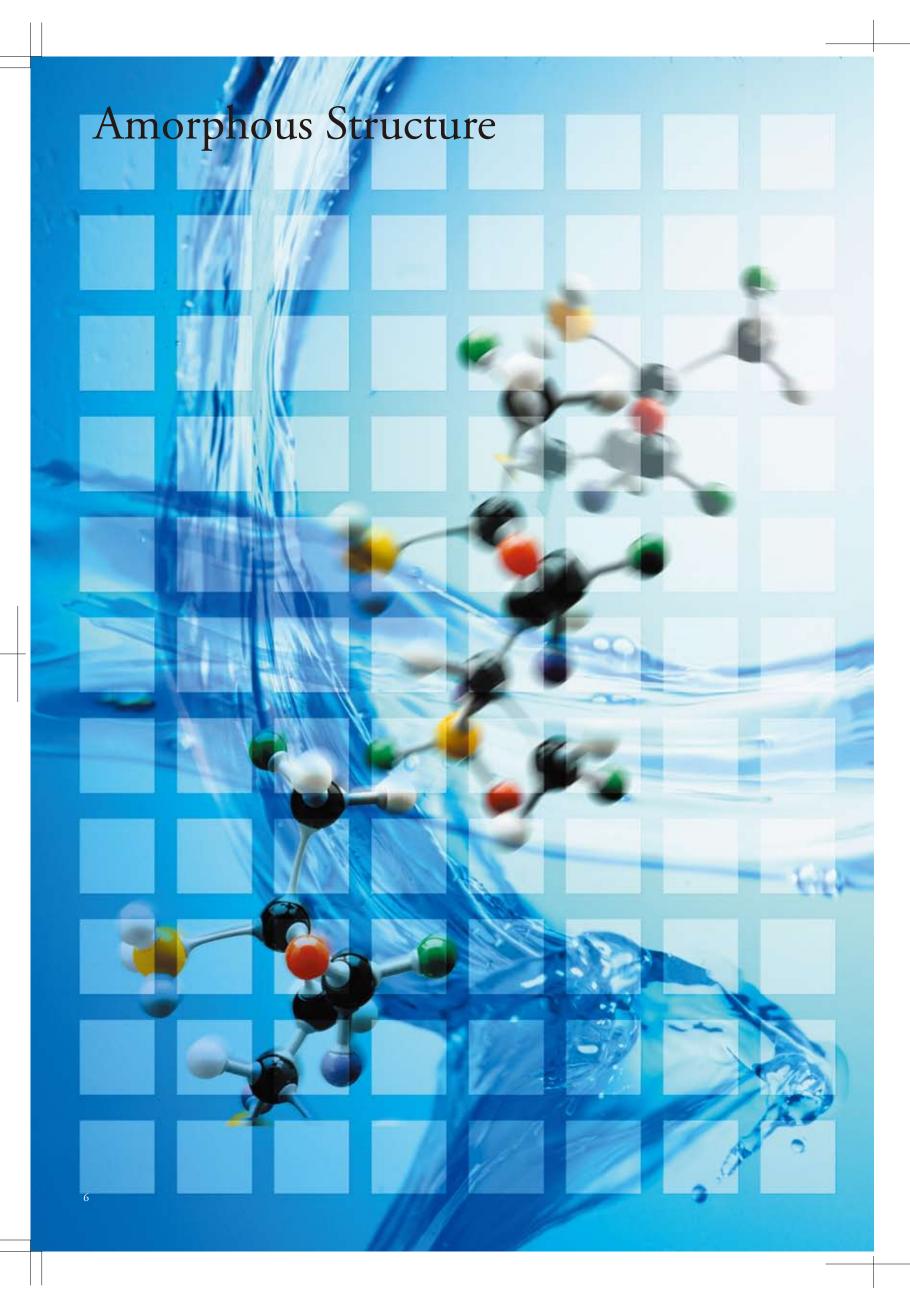

Table of Contents

General —	— 3
Example of Application Development	_ 4
Three Types of CYTOP————————————————————————————————————	_ 6
Comparison of Adhesion	_ 8
Optical Characteristics	— 10
Electrical Characteristics	- 12
Physical Characteristics / Surface Characteristics ————————————————————————————————————	— 13
Mechanical Characteristics / Chemical Resistance	1 4
List of Data	- 15
Coating Method	- 16
Analysis Results of Heavy Metal and Bromine	- 18
Precautions for Handling CYTOP / Precautions for Relevant Regulations	

Expanding to unlimited zone. Six excellent characteristics are highly acclaimed.

AGC's CYTOP has achieved extremely high transparency, of which the visible light transmission ratio is more than 95% or more, with an amorphous structure completely different from existing fluoropolymers. Since CYTOP can be dissolved with a special fluorinated solvent, it can be used in thin film coatings to a thickness of a few sub-microns. Furthermore, as it has the characteristics of fluoropolymers, CYTOP is attracting attention as an innovative material. From the Cytop polymer, three types of products are made — type A, type M and type S —according to the application. It is used in various fields by taking advantage of its six characteristics (transparency, electric insulation, water and oil repellency, mold release, chemical resistance, and moisture-proof property).

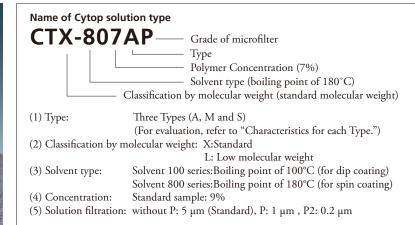




New material in places where advanced technology is used. CYTOP is used in various fields.

CYTOP has many excellent characteristics. Each characteristic has achieved the top performance among organic materials. CYTOP has been attracting a lot of attention in the field of advanced technologies. It has already solved many technological issues, and it also meets various requirements in a wide range of industries and is highly acclaimed.

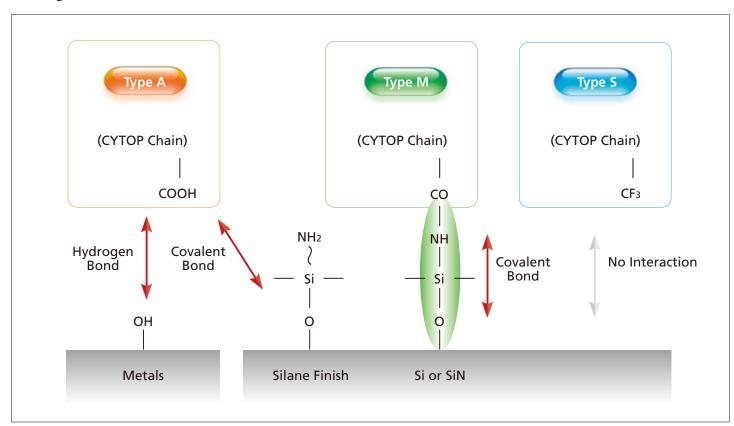
5



CYTOP provides transparency and desired coating. Three types are available for applications.

Since most fluoropolymers are insoluble, they need to undergo a baking process to fix them onto the substrate. CYTOP can eliminate this process. Since it can be dissolved in a special fluorocarbon solvent, it is easy to coat it onto a substrate. CYTOP takes advantage of maintaining its high transparency. CYTOP has three types each with a different functional group at both ends of the polymer.

Туре	End functional group	Characteristics	Example of application
Type A	— СООН	 Metal and glass can be coated by using a silane coupling agent together with this type of CYTOP Plastic can be coated by using a special primer together with this type of CYTOP Transparent to visible light 	Anti-reflection film Optical membrane Protective layer Water and oil repellent Electric insulator
Type M	— CONH \sim S i(OR)n	 One-step coating of metals and glass can be done. 	Protective layer Water and oil repellent Electric insulator
Type S	— CF₃	 High transparency for wide range of light from visible light to UV Tough UV resistance Non-adhesion 	Pellicle Optical materials Mold release material



CYTOP's adhesion mechanism for three types is introduced in detail.

For example, the functional groups of type A and type M form chemical bonds with molecules on surface of substrate after heat treatment, resulting in firm adhesion of CYTOP to the substrate. In contrast, since the functional group of type S is not joined to the substrate, it can be independently used. If the Type S is applied to the substrate, it can be used together with other types of CYTOP. By appropriately combining the three different types of CYTOP, you can achieve the optimum coating on various substrates under different conditions.

Comparison of adhesion

CYTOP	Pretreatment	Result of chessboad Peeling Test
Type A	Silane*	0 (No change)
Type M	No	1 (Peel 5% or less)
Type S	No	5 (Complete peel)

*Silane Treatment Apply CYTOP after spin coating with a 0.05% water/ethanol solution of $H_2NC_3H_6Si(OC_2H_5)_3$.

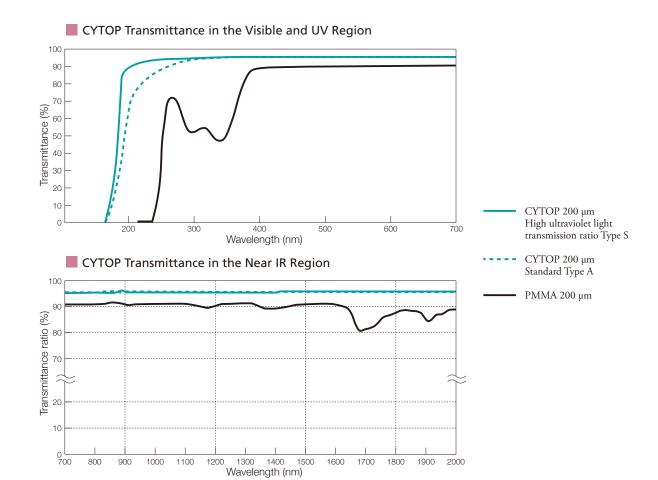
[Evaluation conditions]

CTL-800 series

Spin coating: Membrane thickness:approx. 1μm

180°C, 1 hour

Chessboad Peeling Test (according to JIS K5600)


Peeling rank
0: No change
1: Corner peel 5% or less

2: Linear peel 15% or less

3: Peel 35% or less 4: Peel 35% or more

Optical Characteristics

	СҮТОР	PTFE	PFA	PMMA	Remarks
Refraction index	1.34	1.35	1.35	1.49	Abbe's refractometer
Light transmission ratio (%)	95	Translucent	Translucent	93	Visible light range, 200 μm
Abbe's number	90	-	-	55	Abbe's number

■ Internal transmittance (for 5 mm thickness)

Wavelength (nm)	250	400	550	850	1300	1550	1600	1700	1800	1900	2000
Internal transmittance (%)	100	100	100	100	100	100	100	99.9	99.85	99.75	99.15

■ Photo-elastic characteristics

Sample	CYTOP	PC	PSt	PMMA	CR-39	Optical glass
Photo-elastic constant ×10 ⁻¹² Pa ⁻¹	6.5	76	8.5 ~10.3	-2.8~-3.9	41	$0.5 \sim 2.9$
Photo-elastic sensitivity ×10 ⁻⁶ m/N	0.108	1.02	0.16	0.05	0.68	_

^{*} Photo-elastic sensitivity α : Number of interference fringes appeared when unit simple stress (or main stress difference) is applied to the unit thickness plate.

Refractive Indices in the Near IR

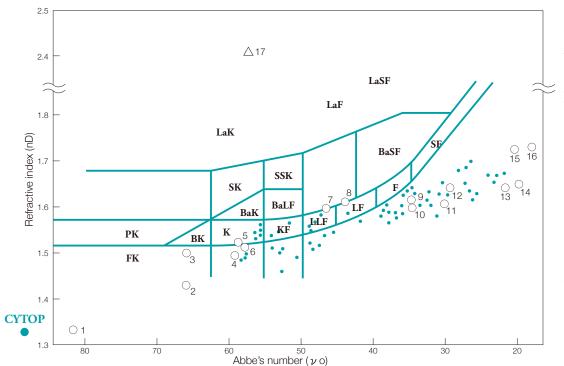
	CYTOP	PMMA	Remarks
	1.34	1.48	Abbe's refractometer (λ= 589 nm)
Refractive index	1.3395	1.4878	Prism coupler (λ = 633 nm)
Refractive fildex	1.3348	1.4792	Prism coupler (λ = 1,300 nm)
	1.3335	1.4778	Prism coupler (λ= 1,550 nm)

Refractive Indices in the short wavelength Region

Wavelength (nm)	Refractive index	Standard deviation
238	1.35764	1.3×10 ⁻⁵
245	1.35637	1.2×10 ⁻⁵
275	1.35393	1.5×10 ⁻⁵
313	1.35132	1.7×10 ⁻⁵
365	1.34840	2.1×10^{-5}
407	1.34566	2.0×10^{-5}
436	1.34404	2.0×10^{-5}
546	1.3402	3.3×10^{-5}

Measurement of refractive index

*Experimental method:

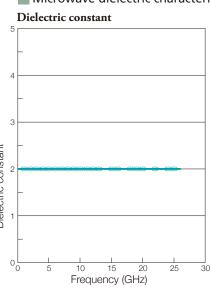

 $A\,60^\circ$ prism with a mercury lamp as the source of white light was used to illuminate the sample at the minimum angle which refraction occurs. From this angle, the refractive index is calculated as follows;

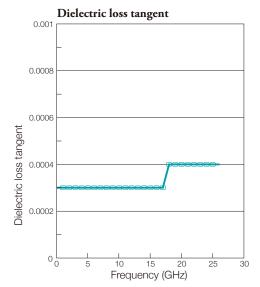
 $n(\lambda) = \sin((\theta_{m+\alpha})/2)/\sin(\alpha/2)$

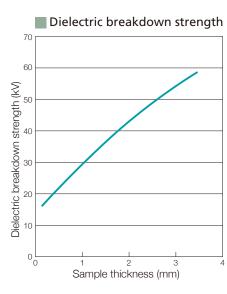
 α is the vertical angle of the prism and θ m is the angle of minimum deviation.

The results are showed in the table. The polymer wes CTL.

Refractive index and Abbe's number




- Polymethacrylic acid trifluoroethyl
 Polymethacrylic acid isobutyl
 Polyacrylic acid methyl
- 5 Diethylene glycol bisallyl
- Carbonate (CR-39) polymer 6 Polymethacrylic acid methyl
- 7 Poly α -bromoacrylic acid methyl
- 8 Polymethacrylic acid 2,3-dibromopropyl
- 9 Phthalic acid diallyl polymer
- 10 Polymethacrylic acid phenyl 11 Polybenzoic acid vinyl
- 12 Polystyrene 13 Polymethacrylic acid pentachlorophenyl
- 14 Poly o-chlorostyrene
- 15 Polyvinyl naphthalene 16 Polyvinyl carbazole
- 17 Diamond
- Other polymers including FK and PK Optical glass
- * Refractive index and Abbe's number of a typical organic polymer


Electrical Characteristics

	СҮТОР	PTFE	PFA	PMMA	REMARKS
Dielectric constant	2.0~2.1	>2.1	2.1	4	Room temperature 100 Hz to 1 MHz
Dielectric loss tangent	0.0008>	>0.0007	0.0002	0.04	Room temperature 100 Hz to 1 MHz
Volume resistivity (/cm)	>1017	>1018	>1018	>1018	Room temperature, in Air
Breakdown voltage (kV/0.1 mm)	9	13	12	2	Room temperature, in Air
Arc resistance (s)	>200	>280	>180	No track	

■ Microwave dielectric characteristics of CYTOP

Measurement method: Triplate rail resonance method

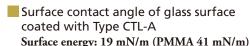
Measurement method: JIS C2110

Physical Characteristics

	СҮТОР	PTFE	PFA	PMMA	Remark
Glass transition temperature (°C)	108	(130)	(75)	105~120	DSC
Melting point (°C)	not observed	327	310	iso 160 sys 200	DSC
Specific gravity	2.03	$2.14 \sim 2.20$	$2.12 \sim 2.17$	1.09~1.20	
Water contact angle (°)	110	114	115	80	25°C
Critical surface tension γc (mN/m)	19	18	18	39	25°C
Water absorptivity (%)	<0.01	< 0.01	<0.01	0.3	60°C in water
Durometer hardness	HDD81	HDD55	HDD58∼60	HDD92	ASTM D2240
Linear expansion coefficient (K-1)	1.15~1.20×10 ⁻⁴	1.0×10 ⁻⁴	1.3×10 ⁻⁴	8.0×10 ⁻⁵	TMA(40~100°C)

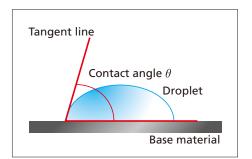
Gas pe	ermeability coefficient	Comparison of oxygen permeability		Comparisor	of steam permeability
Gas	Permeability coefficient (cm³·cm/cm²·S·cmHg)		Permeability coefficient (cm³·cm/cm²·S·cmHg)		Permeability coefficient (g/m² 24hr)
Helium	1.58×10 ⁻⁸	CYTOP	8.34×10 ⁻¹⁰	СҮТОР	0.2
Nitrogen	8.34×10 ⁻¹⁰	PTFE	4.3 ×10 ⁻¹⁰		(Sample thickness 100μm)
Oxygen	1.94×10 ⁻¹⁰	PE	2.9 ×10 ⁻¹⁰	Polyimide	84 (Sample thickness 25μm)

	neability coefficient :m³·cm/cm²·S·cmHg)
CYTOP	8.34×10 ⁻¹⁰
PTFE	4.3 ×10 ⁻¹⁰
PE	2.9 ×10 ⁻¹⁰
Polyvinylidene chloride	5.3 ×10 ⁻¹³


	(g/m ² 24hr)
СҮТОР	0.2 (Sample thickness 100μm)
Polyimide	84 (Sample thickness 25μm)
Silicon rubber	840 (Sample thickness 25μm)
High-density polyethyle	ne (Sample thickness 25μm)
	0.5

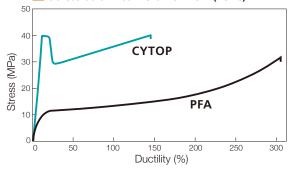
Polyvinylidene chloride

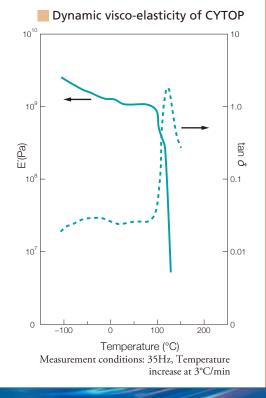
■ Water absorption of CYTOP


	CYTOP		Polyimid
Water absorption ratio (%)	< 0.01	< 0.01	0.5

Surface Characteristics

Surface energy: 19 mN/m (PMMA 41 mN/m)				
Medium Coat	Water	Normal hexadecane		
No	44°	21°		
CYTOP Type A	112°	53°		
Repellent surface Water and oil				


characteristics



Mechanical Characteristic

	СҮТОР	PTFE	PFA	PMMA
Tensile strength (MPa)	41~49	14~32	28~32	65~73
Tensile extension ratio (%)	162~192	200~400	280~300	3~5
Yield strength (MPa)	40	11~16	10~15	(65)
Tensile modulus (MPa)	1400~1600	400	580	3000

Stress-strain curve of CYTOP (25°C)

Chemical Resistance

Reagent		Change of weight (%)	Change of appearan	ce Remark
Acid	35% HCl	0.0	No change	$60^{\circ}\text{C} \times 1 \text{ week}$
	96% H ₂ SO ₄	0.0	No change	$60^{\circ}\text{C} \times 1 \text{ week}$
	50% HF	0.0	No change	$60^{\circ}\text{C} \times 1 \text{ week}$
Alkaline	10% NaOH	0.0	No change	60°C × 1 week
	44% NaOH	0.0	No change	$60^{\circ}\text{C} \times 1 \text{ week}$
	48% KOH	0.0	No change	$60^{\circ}\text{C} \times 1 \text{ week}$
	2.38% TMAH	0.0	No change	$60^{\circ}\text{C} \times 1 \text{ week}$
Organic solvent	Hexane	0.0	No change	Room temperature × 1 week
	IPA	0.0	No change	Room temperature × 1 week
	Acetone	0.0	No change	Room temperature × 1 week
	Methyl ethylene	0.0	No change	Room temperature × 1 week
				T

Test piece: $20 \times 30 \times 0.2 \text{ mm}$

List of Data

	Unit	Characteristic value	Remarks
Specific gravity		2.03	ASTM D792
Glass-transition temperature	°C	108	DSC
Melting point	°C	not observed	
Contact angle (water)	degree	112	Contact angle gauge
Contact angle (normal hexadecane)	degree	53	Contact angle gauge
Critical surface tension yc	mN/m	19	
Water absorptivity	%	>0.01	
Yield strength	MPa	40	Tensiron
Yield strain	%	5.0	Tensiron
Tensile strength	MPa	41~49	Tensiron
Tensile elongation	%	162~192	Tensiron
Tensile modulus	MPa	1400~1600	Tensiron
Bending strength	MPa	70	ASTM D790
Bending modulus	MPa	2000	ASTM D790
Compression strength	MPa	30	ASTM D695
Compression modulus	MPa	2900	ASTM D695
Poisson's ratio		0.42	
Durometer hardness		HDD81	JIS K7215
Izod impact strength	kPa∙m	40	JIS K7110
		90	1.82MPa Deflection temperature under load
Thermal deformation temperature	°C	100	0.45MPa Deflection temperature under load
Specific heat	J/(kg·K)	0.861	JIS K7123
Thermal conductivity	W/(m⋅K)	74	Laser flash method
Linear expansion coefficient	ppm/°C	115~120	TMA(0 ~80°C)
Volume resistivity	·cm	>10 ¹⁷	JIS K6911
		2.0~2.1	100 Hz to 1 MHz, Room temperature, JEC-615
Dielectric constant		2.04~2.05	1 GHz to 25 GHz, Room temperature
		1∼8×10 ⁻⁴	100 Hz to 1 MHz, Room temperature, JEC-615
Dielectric loss tangent		3~ 4×10⁻⁴	1 GHz to 25 GHz, Room temperature, Triplate rail resonance method
	kV/mm	20	2.3 mm in thickness, JIS C2110
Dielectric strength	kV/0.1mm	10	0.14 mm, JIS C2110, Triplate rail resonance method
Arc resistance	Sec	200<	JIS K6911
Refractive index		1.34	Abbe's refractometer, JIS K7142, 25°C or high
Photoelastic coefficient	×10 ⁻¹² Pa ⁻¹	6.5	
Photo-elastic sensitivity	×10 ⁻⁶ m/N	0.108	

Coating method of CYTOP

Various methods to coat the CYTOP solution are available depending on the base material, shape and target film thickness. To maintain the characteristics of the coating film and to have it adhere to the base material, pretreatment suitable for each base material is required.

Features of various coating methods of CYTOP

Feature

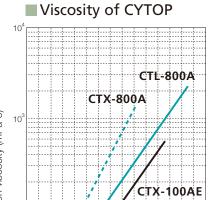
- reactive			
Coating method	Spin-Coating Dip-Coating		Potting
Membrane thickness of CYTOP	10 μm or less	1 μm or less	1 to 20 μm
Shape of substrate	Flat board (or sheet), Circular board	Any type of board may be used.	Any type of board may be used.
Control factors of membrane thickness	Solution concentration, Solution viscosity, spining speed	Solution concentration, Solution viscosity, Pull-up speed	Solution concentration, Nozzle shape
Thickness controllability	Highly accurate	Highly accurate if dip coater is used	Variable
Suitable CYTOP series	CTX-800 series CTL-800 series Solvent: CT-solv180	CTX-100E series CTL-100E series Solvent: CT-solv100E	CTX-100E series CTX-800 series

Notes: Whichever coating method is used, it can be repeated several times to give the thickness. In such case, after applying the first coat, let it dry uncompletely before applying another coat (1-10 minutes at 70-120°C). Any bubbles in the CYTOP liquid must be removed before drying.

■ Pretreatment method of base material

Type of base material	Pretreatment method (for use with Standard grade A)	Applications
Glass	Treatment with silane coupling agent (H2NC3H6Si (OC2H5)3, etc.) Dilution solvent: ethanol, water, etc. Concentration: 0.001 to 0.05% Solvent drying (spin drying, etc.)	Glass, Quartz, Silicon wafer
Metal	No special pretreatment is required. (Silane coupling pretreatment similar to that for glass is also effective.)	Iron, SUS, Aluminum, Silver, etc.
Plastic	Treatment with primer (CT- P10: Containing 15% of active constituent) Dilution solvent: Isopropyl alcohol acetic acid isobutyl in a ratio of 9:5, etc. Concentration: 0.1 to 1% Solvent drying (nitrogen blow, etc.)	PMMA, PC, PS, PSF, etc.

Example of CYTOP curing conditions

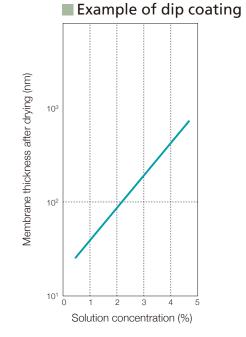

* This is only an example for reference. Please examine and determine the optimum conditions. $80^{\circ}\text{C} \times 60 \text{ min. (oven)} + 200^{\circ}\text{C} \times 60 \text{ min. (oven)}$

Solution

■ Boiling point

Two types of CYTOP solution are available to meet the different coating methods of customers.

- · 180°C: For spin coating
- · 100°C: For dip coating


Concentration (%)

25°C, E-type viscometer CTX-100E: Solution CT-Solv100E (Boiling Point 100°C) CTX, L-800: Solution CT-Solv180 (Boiling Point 180°C)

Coating characteristics

Low-molecular weight type (CTL-800A) Coating conditions: 500 rpm × 10 sec + specified number of revolutions × 20 sec

CYTOP CTX-100E series Example is pull-up speed at 6 cm/min.

Analysis Results of Heavy Metal and Bromine: Reference example

· ·	Cd	Cr	Pb	Hg	Br
Item	Lower limit of				
Sample name	detection: 5ppm	detection: 2ppm	detection: 5ppm	detection: 5ppm	detection: 20ppm
CTL-109AE	Not detectable				
CTX- 809A	Not detectable				
CT-SOLV100E	Not detectable				
CT-SOLV180	Not detectable				

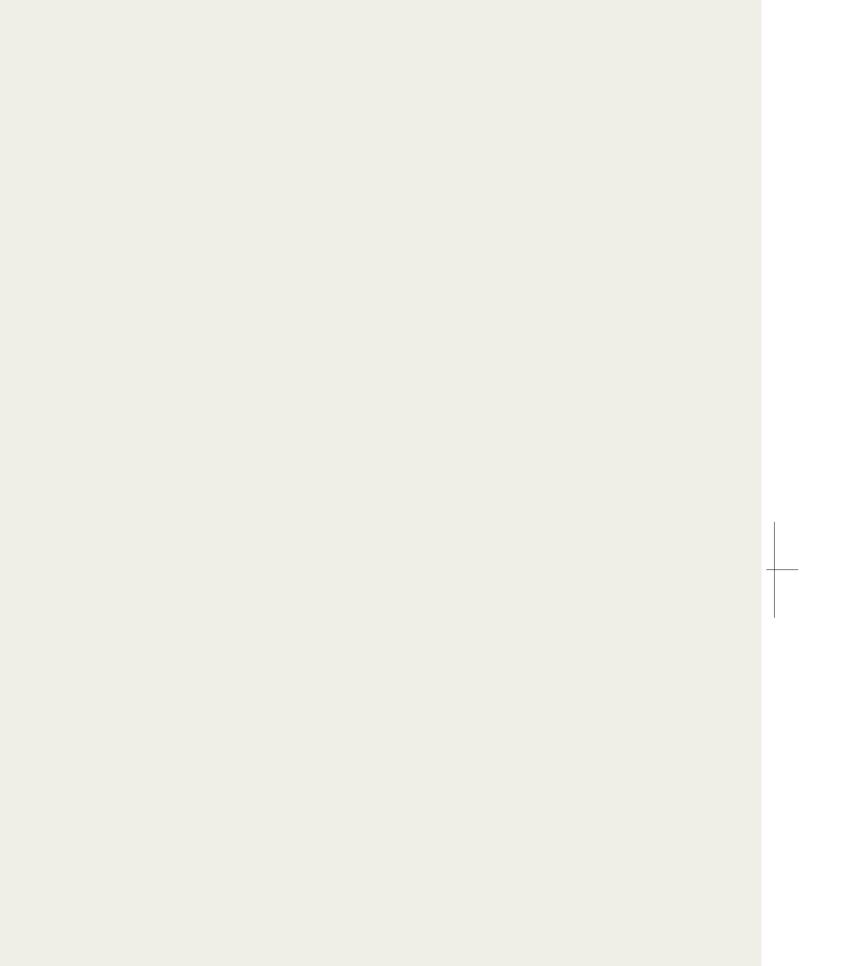
Precautions for Handling CYTOP

When using CYTOP, please comply with MSDS.

lacktriangle Precautions for thermal decomposition

Thermal decomposition at high temperature (starts at 400°C) and a fire may generate hazardous substance like hydrofluoric acid. Therefore, do not use the product under conditions in which it will thermally decompose and ensure good ventilation for use at high temperature such as forming by melting. (Use the product at normal air pressure and a temperature of 350°C or less.)

What to do in emergencies	• Inhalation	· If someone has become sick by inhaling vapor, gas, or similar substances, rest them in a place with clean air and consult a doctor. · If their breathing is weak or has stopped, perform artificial respiration. Consult a doctor immediately.	
	If CYTOP comes into contact with your skin	 Wipe deposit immediately with a cloth. If the affected area's appearance has changed or if the area concerned hurts, consult a doctor. Rinse with a lot of water and soap or a detergent for skin. Do not use a solvent or thinner. 	
	If CYTOP gets into your eye	· Consult a doctor as soon as possible. · Wash the eyes with a lot of clean water immediately for 15 minutes or more. Wash it off completely at the back of the eyelids.	
	• If you have swallowed CYTOP	 If it is swallowed by mistake, rest and consult a doctor immediately. Do not let a person throw up unless otherwise instructed so by a medical expert. 	
In the event of a fire	Fire extinguisher	· Use a non-flammable fire extinguisher suitable for an ambient fire.	
	 Specific hazard of fire 	· If it is burning, a poisonous gas may be emitted.	
	Specified extinguishing method	· Remove movable containers from the area of the fire as long as it is safe to do so.	
	Protecting persons who are engaged in fire extinguishing	· If it is burning, a poisonous gas (hydrogen fluoride, halocarbonil, carbon monoxide and very toxic perfluoro-isobutylene) may be emitted. Persons who are engaged in fire extinguishing should wear self-contained breathing apparatuses.	
In the event of a leakage	Precautions for health and safety	 For indoor work, ventilate the area well until the work is completed. When working, wear appropriate protective equipment (such as gloves, protective masks, aprons and goggles). Wear some breathing apparatus in places with insufficient ventilation. 	
	Precautions for the environment	· Dispose of deposit or waste according to the relevant laws.	
	Method of removal	 If there is a lot of waste, cover the drain and build up a bank to prevent it from entering the sewer. Absorb waste in inert material such as dry sand and collect it in containers for disposal. Ventilate the peripheral area. Dispose of collected substances as soon as possible. 	
	 Preventing secondary accidents 	· Collect any leaks in a sealable container and move it to a safe place.	
Precautions for handling and storage	Handling		
	Technical measures	 Use is limited for industrial purpose or experts. Seal the container each time. Move sources of fire away during handling and while vapor still remains after handling. Install a local exhaust system if the fluid is handled at temperatures above its boiling point. A performance of 25 cm/sec or more must be maintained. If the fluid is at a temperature above its boiling point in a place without an exhaust system, put on a respirator, stop the heat source and evacuate the place. 	
	• Precautions	 Handle the fluid in a well-ventilated place. Install a local exhaust system if the fluid is handled at a temperature above its boiling point. A performance of 25 cm/sec or more must be maintained. 	
	Precautions for safe handling	· Do not eat, drink or smoke when using the product. Use soap and water to wash any areas that come into contact with this product.	
	Storage		
	Appropriate storage conditions	Store the product in a well-ventilated, cool, dark place. Do not store it near a source of fire. Store it away from a strong base.	
	Safe container and packaging materials		
Exposure prevention and protection measures	Measures for facilities	 Install a local exhaust system in a handling area. Install a shower, hand washing basin and eye wash system near the working area. If decomposed material may be generated because of heat, use an appropriate local exhaust system to keep the concentration of the decomposed material at below the allowable limit. 	
	Protective equipment	Protective equipment for breathing: Wear a gas mask for organic gas. Protective equipment for hands: Wear gloves which are resistant to organic solvents or chemicals. Protective equipment for eyes: Wear protective goggles. Protective equipment for skin and body: Wear them as required.	


- Precautions for Relevant Regulations

 (1) Many types of CYTOP apply to Clause 5 in Table 1 of the Export and Trade Control Law in Japan. To export or take out CYTOP from Japan, you will need permission from the minister of Economy, Trade and Industry. The product must not be given to a third party.

 (2) CYTOP applies to Export Administration Regulations (EAR) in the United States. Exporting or taking the product out of the US is controlled under the regulations.

 (3) CYTOP must be used for industrial application. It has not been developed and manufactured for medical or food-related applications.

18

